Designation: D1550 – 94 (Reapproved 2015)

Standard ASTM Butadiene Measurement Tables¹

This standard is issued under the fixed designation D1550; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

DOI: 10.1520/D1550-94R15.

- 1.1 The ASTM Butadiene Measurement Tables are for use in the calculation of quantities of butadiene. The accompanying Tables 1-4 cover the normal operating ranges for the reduction of observed specific gravity and volume to 15.6/ 15.6 °C (60/60 °F) and for the calculation of weight-volume relationships of butadiene.
- 1.2 These tables are applicable to both butadiene and butadiene concentrates (minimum of 60 % butadiene).

Note 1-These tables replace the existing tables in the National Institute of Standards and Technology Letter Circulars LC-736 and LC-757 and the Rubber Reserve Corp., Butadiene Laboratory Manual.

Products, Liquid Fuels, and Lubricants and are the direct responsibility of Subcommittee D02.02.07 on Temperature Determination (API MPMS Chapter 7.0). Current edition approved Oct. 1, 2015. Published December 2015. Originally approved in 1958. Last previous edition approved in 2009 as D1550 - 94 (2009).

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

D1250 Guide for Use of the Petroleum Measurement Tables

3. Significance and Use

3.1 Accurate knowledge of the weight and volume of butadiene is necessary for the orderly manufacture, storage, transfer, and sale of the material. These tables are suitable for use in these and similar aspects of butadiene commerce.

0.627

TABLE 1 REDUCTION OF OBSERVED SPECIFIC GRAVITY TO SPECIFIC GRAVITY 15.6/15.6 °C (60/60 °F)

This table gives values of specific gravity 15.6/15.6 °C (60/60 °F) corresponding to specific gravities observed with a glass hydrometer at temperatures other than 60 °F. The expression "Observed Specific Gravity" appears in this table because it is the term most generally used in industry. For specific gravities determined by hydrometer, a more exact expression would be "hydrometer indication at the observed temperature." This hydrometer indication differs slightly from the true specific gravity at the observed temperature owing to the expansion or contraction of the glass hydrometer when its temperature differs from its calibration temperature of 60 °F

It is generally impracticable to determine a specific gravity at exactly 15.6 °C (60 °F) although it is at this temperature only that strictly correct results are obtained with a standard glass hydrometer. In converting an observed specific gravity at the observed temperature tF (hydrometer indication of specific gravity #60 °F) to the corresponding 60/60 °F value, two corrections are possible. The first arises from the change in volume of the glass hydrometer with temperature, and the second arises from the change in volume of the butadiene. This table takes into account only the change in volume of the butadiene because the change in volume of the hydrometer is insignificant in comparison with the accuracy of the values for the change in volume of the butadiene.

This table must be entered with specific gravities measured with a glass hydrometer calibrated at 15.6/15.6 °C (60/60 °F)

Example—If the specific gravity observed on a hydrometer in butadiene at 40 °F is 0.642, what is its specific gravity 60/60 °F?

Enter the table in the column for "Observed Specific Gravity," headed 0.640, and note that against an "Observed Temperature" of 40 °F, the corresponding specific gravity 60/60 °F is

Likewise, note that for 0.645 specific gravity opposite 40 °F, the corresponding specific gravity 60/60 °F is

0.632 This represents an increase of 0.005 in specific gravity 60/60 °F for an increase of 0.005 in the value at 40 °F. Therefore, by simple proportion, an increase 0.002 in the specific gravity value noted at 40 °F from 0.640 to 0.642 increases the corresponding specific gravity 60/60 °F by 0.4 × 0.005 or

Then, the specific gravity 60/60 °F corresponding to the observed specific gravity of 0.642 at 40 °F is 0.627 + 0.002 or 0.629

¹ These tables are under the jurisdiction of ASTM Committee D02 on Petroleum

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

TABLE 1 Reduction of Observed Specific Gravity to Specific Gravity 15.6/15.6°C (60/60°F)

18.3–43.0 °C (65–110 °F) 0.585–0.615

Observed Temperature	Observed Specific Gravity										
	0.585	0.590	0.595	0.600	0.605	0.610	0.615				
F ^A			Correspondi	ing Specific Gravity 6	0/60 °F						
65											
66											
67											
68							0.621				
69							0.621				
70							0.000				
70	•••	•••	•••	•••		•••	0.622				
71	•••	•••	•••	•••		•••	0.623				
72							0.623				
73	•••	***	•••		•••		0.624				
74							0.625				
75			•••	•••		0.621	0.625				
76						0.621	0.626				
77			•••	•••		0.622	0.627				
78	•••					0.623	0.627				
78 79						0.623	0.628				
79	•••	•••	•••	•••		0.623	0.020				
80						0.624	0.629				
81						0.625	0.629				
82					0.621	0.625	0.630				
83					0.621	0.626	0.631				
84					0.622	0.627	0.631				
85	•••	***	•••		0.623	0.627	0.632				
86	•••	•••	•••		0.623	0.628	0.633				
87					0.624	0.629	0.633				
88	•••		•••		0.625	0.629	0.634				
89	•••	***	•••	0.621	0.625	0.630					
90				0.622	0.626	0.631					
91	•••	•••	•••	0.622	0.627	0.631					
92				0.623	0.627	0.632					
93	•••										
	•••	•••		0.624	0.628	0.633					
94				0.624	0.629	0.633	•••				
95				0.625	0.629	0.634					
96			0.621	0.625	0.630	0.634					
97			0.622	0.626	0.631						
98			0.622	0.627	0.631						
99	•••		0.623	0.627	0.632	•••					
100			0.004	0.000	0.000						
100			0.624	0.628	0.632						
101			0.624	0.629	0.633						
102	•••	0.621	0.625	0.629	0.634						
103		0.621	0.626	0.630	0.634						
104		0.622	0.626	0.631							
105		0.623	0.627	0.631							
106		0.623	0.628	0.632							
107		0.624	0.628	0.633		•••	•••				
107		0.625	0.629	0.633	•••	•••	•••				
						•••					
109	0.621	0.625	0.629	0.634		•••	•••				

TABLE 1 Reduction of Observed Specific Gravity to Specific Gravity 15.6/15.6°C (60/60°F)

 $-9.4 \text{ to} + 10.0 \,^{\circ}\text{C} \, (15-50 \,^{\circ}\text{F})$ 0.620-0.650

Observed _ Temperature,	Observed Specific Gravity									
	0.620	0.625	0.630	0.635	0.640	0.645	0.650			
°F ^A	Corresponding Specific Gravity 60/60 °F									
15										
16							0.621			
17							0.621			
18							0.622			
19							0.623			
00							0.600			
20	•••		•••	•••	•••		0.623			
21							0.624			
22							0.625			
23							0.625			
24						0.621	0.626			
25						0.621	0.627			
26						0.622	0.628			
27	•••		•••			0.623	0.628			
28	•••	•••	•••	•••	•••	0.624	0.629			
29	•••				•••	0.624	0.630			
30						0.625	0.630			
31						0.626	0.631			
32					0.621	0.626	0.632			
33					0.622	0.627	0.632			
34					0.622	0.628	0.633			
34	•••		•••		0.022	0.028	0.000			
35					0.623	0.628	0.634			
36					0.624	0.629	0.634			
37					0.625	0.630	···			
38					0.625	0.630				
39				0.621	0.626	0.631				
40				0.604	0.607	0.632				
				0.621	0.627		•••			
41				0.622	0.627	0.632				
42				0.623	0.628	0.633				
43				0.624	0.629	0.634	•••			
44				0.624	0.629	0.634				
45				0.625	0.630					
46				0.626	0.631					
47	•••		 0.621				•••			
			0.621	0.626	0.631		•••			
48	•••		0.622	0.627	0.632	•••	***			
49			0.623	0.628	0.633					
50			0.623	0.628	0.633					